CUTTW
JOURNAL

modeling can help fill this gap. An SD model

m m
F I n d I n g a c o m m o n represents how managers perceive their

business processes, through intuitive cause-
L f G I b I and-effect diagrams. Once simulated,
a n g u a g e o r o a numeric results and dynamic patterns of
= behavior provide insight and forecasts.
s 0ﬂw a re P ro e cts These models capture important dynamic
l issues such as feedback, human percep-
tions, and time delays. In this article, [will
describe how SD modeling can help organi-
zations achieve effective communication
. and negotiation within a global software
by Alexandre G. ROd rlgueS project environment. I will also discuss a
he rapid globalization of the world economy is forcing companies to practical application of SD modeling in a
focus their business on international market segments. In order to reach large-scale international software project.
their global target groups, many projects are now implemented and
managed by international teams, thus gathering people from different GLOBAL ENVIRONMENTS
cultural backgrounds. Effective cooperation among these teams is vital to
success. In the software industry, technical
teams in the US and European Union (EU)
are increasingly incorporating programmers
from other parts of the world, often through
geographically dispersed groups. Technology
has been helping organizations to overcome
communication barriers through multimedia-
based systems for cooperative work.

However, at the management level, cultural GJobal projects can take various forms: a

Managing a software project is a great chal-
lenge: persistent failures suggest that the IT
industry has not achieved a mature and
effective management framework.
Managing a global software project can be
even more difficult. A global operating envi-
ronment adds a variety of new issues that
need to be handled effectively.

differences are probably the more signifi- “joint venture” project generally comprises a
cant influence — language, life rhythms, multinational consortium of partners; some
perception of time urgency, values, and projects may have only one contractor orga-
codes of conduct all may differ. nization but the work is divided and

outsourced to various subcontractors of
different nationalities; in other projects, a
stable and single-nationality project team
may need to handle an international client;
and in other cases, a project team may have
its technical staff divided into multinational
and geographically dispersed groups.
Whatever the scenario, there are issues that
make it difficult to observe the following
project management “best practices”:

Project management is primarily based on
effective communication and negotiation
among the parties involved in a project: the
client, the contractor, the subcontractors,
and the various technical and management
subteams. Misinterpretation of cultural
differences can easily jeopardize mutual
trust, which is essential for cooperation.
However, procedures to cope with this
problem on a more systematic basis have
not yet been developed. A “culturally inde- B Keeping a project orientation
pendent” common language for managers
to share their personal views would be most
valuable. System dynamics (SD) business B Keeping a customer orientation

B Building a project team culture

Vol. 12, No. 3 March 1999 47

CUTTER

48

JOURNAL

March 1999

B Maintaining effective and transparent
communication

In multinational consortium projects, the
different partners often have different objec-
tives, both strategic and operational. For one
partner, the more important objective may
be to penetrate a new market, while for
another partner, achieving high profits is the
primary motivation. Another problem has to
do with the differences in the hardware and
software platforms used by geographically
dispersed groups. System integration can
raise serious technical challenges, yet
changing the platforms requires time and
money — two rare commodities in software
projects. Perhaps the more critical (yet
subtle) issue is the cultural differences.
Cultures establish norms through which
people communicate. A great deal of what
happens in a software project is just about
communication.

THE CHALLENGE OF COMMUNICATION

Projects almost always bring people together
for the first time. Poor communication is one
of the major causes of management prob-
lems in projects. Global software projects are
faced with this tremendous challenge:
ensuring transparent communication. While a
simple concept in words, it may be very diffi-
cult to achieve in multinational groups.
Problems stemming from poor communica-
tion typically have knock-on effects, and their
causes are difficult to trace back.

In general, projects are characterized by
intensive and difficult communication.
There are many communication channels
that are necessary to maintain in order to
keep the project underway. Difficulties then
stem from the unfamiliarity among the
parties involved, from the differences in
their objectives (often in conflict), and from
cultural differences. The key players
involved in a project are usually the

Vol. 12, No. 3

contractor, the client, the technical and
management subgroups, the subcontrac-
tors, and eventually the government(s),
which may impose certain legislation over
the contractor’s work. In a global project,
not all but many of the communication
channels established between these players
occur among parties of different nationali-
ties. The critical issue about communication
is that it is the basis of an ongoing negotia-
tion process. Poor communication may
prevent productive agreements that would
otherwise be easy to achieve. In other
cases, it may lead to situations where two
parties both think they have negotiated
effectively, but their understanding of the
agreement can differ substantially.

Let us take the example of the client-
contractor relationship. We know that the
client’s trust in the contractor is a key factor
in project success: a client who suspects
the contractor’s competence is likely to take
actions that have adverse impacts on the
contractor’s productivity and work quality.
Typical examples are the reluctance to delay
milestones (even when that would actually
benefit the project) and a high demand for
progress repotrts. In certain software
projects, negotiation of scope changes with
the client can be the single most important
management policy. Requirements “errors”
are persistently reported as being very
expensive and the major cause of cost over-
runs. Estimating their full impacts is very
difficult due to the indirect knock-on effects.
Providing the client with convincing argu-
ments to agree on realistic estimates
becomes very difficult.

Another good example is the relationship
between the management and technical
teams, which is critical to internal perfor-
mance. In a global software project,

these teams can be multinational and
geographically dispersed. Here, multimedia-

©1999 Cutter Information Corp.

based systems for cooperative work hold
the promise of bringing everyone together
[4]. But the cultural barriers and the differ-
ences between the technical and the
management perspectives still remain:
different ways of working, different prioriti-
zation of the tasks, and different perceptions
of what indicates progress may all threaten
effective communication.

There are many interesting examples of
differences in cultural dimensions [8]. In
some cultures, people like to “atomize”
time: they like to do many things at once,
and having constant social contact with
others is very important for them.
Considerable delays in keeping appointments
can be a consequence of these preferences.
Interestingly, these delays work as time pres-
sure for such people to keep up their energy
and motivation. In other cultures, by contrast,
people prefer to divide and organize time.
Tasks are carried out one at a time and in a
more isolated environment. In such cultures,
delays can be seen as lack of organization
and incompetence. Some cultures have a
“strong context”; that is, people like to be
continually well informed about everything
throughout their networks. In other cultures,
people have a weaker context and select just
what is important for a specific task. They
will seek additional information to under-
stand things further only if necessary.

If one considers the impacts of these differ-
ences on two parties trying to negotiate,
one can imagine how valuable it would be
to have a “culturally independent” language.

MODELING AS A COMMON LANGUAGE

Modeling is about representing reality in a
simplified and organized manner. A model
makes it easier for us to understand what
reality is and how it works. There are several
types of models, each taking a different
perspective about the world and using its

Get the Cutter Edge free: www.cutter.com/itgroup/

own representational language. Many see
modeling as a technical task, but this reality
has been changing over the last decade, in
great part because of computers and user-
friendly software. In the business world,
models have been emerging as a very
powerful way of helping managers to under-
stand their problems better. Many business
consulting companies are increasingly using
computer models to help their clients.

Why is business modeling so valuable? We
all have our mental models of problems.
However, personal mental models tend to
be inconsistent, incomplete, and unstruc-
tured. But we only realize that when we are
forced to represent them explicitly. And
that's what we do when we develop a
formal model. A model helps us to find out
“what we really think” and let others know
about that. When developed in a group envi-
ronment, a model allows different people
with different perspectives to share their
personal views and develop a common one
to which they all agree — this common view
becomes the model itself. In this way,
modeling brings consensus. It shifts the focus
of a discussion from the individuals to the
model, an object over which everyone has a
sense of ownership. Practical experience
shows that developing business models
with a group of managers enhances
communication within a team. A final
advantage of a model is that it may have the
ability to answer specific questions.

As I mentioned earlier, there are various
types of models. System dynamics [3] is a
very powerful modeling approach. SD
modeling is “process oriented” (i.e., focused
on “how things work”) and has various
powerful features:

B [t provides a dynamic perspective of
how things evolve over time (e.g.,
how productivity varies throughout
the life cycle of a software project).

Vol. 12, No. 3

CUTTER

March 1999

JOURNAL

49

CUTTER

50

JOURNAL

March 1999

B [t captures the time delays so impor-
tant in business systems (e.g., gaps
between decisions and their impacts).

B [t captures explicitly the soft factors
of human nature, which often domi-
nate software development (e.g., the
impact of staff experience on defect
generation rates).

B [t provides a cause-and-effect
analysis, which is very powerful in
diagnosing problems (e.g., the real
cause of a problem is often indirect).

B [t allows causes to be traced through
cause-and-effect chains.

B SD models can be simulated,
producing dynamic patterns of
behavior and numerical estimates
(e.g., what is likely to be the final
project cost).

There have been a number of applications
of SD models to projects, some of which are
in the software industry [6]. We will now
turn our attention to a practical application
of SD modeling in a real project.

SD MODELING IN ACTION

In the course of the project discussed below,
I developed a system dynamics-based
project management integrated method-
ology (SYDPIM). It provides a method for
developing and validating an SD project
model for any specific software project and
formally integrates its usage with the
PERT/CPM networks. The example I present
here took place in the course of this
research. For reasons of confidentiality, the
numbers are disguised and the scenarios are
hypothetical, though close to reality. The
structure and calibration of the SD model
are based on real data.

The Software Project
The prime contractor for this software-
intensive, large-scale military project was

Vol. 12, No. 3

BAeSEMA Ltd. (UK), now part of BAe
Defence Systems. The project was aimed at
developing a destroyer command-and-fire-
control system for a Far Eastern customer.
The system components were being devel-
oped by various subcontractors from Europe
and a Far Eastern country. The software
system was being developed mostly in-
house and was planned for two overlapping
increments scheduled for 32 months in
total. Transfer of “know-how” to the client
was part of the contract, thus implying close
client involvement, including participation in
technical development.

The software technical team was interna-
tional, including European, Far Eastern, and
Indian programmers. Effective communica-
tion with the client and within the technical
development team was crucial. Of partic-
ular relevance was the subjectivity involved
in interpreting the several contractual agree-
ments, a problem that could be exacerbated
by cultural differences. In order to negotiate
effectively, the contractor had to be able to
explain to the client the full consequences
of scope changes and to quantify those
impacts. The contractor also had to ensure
the transfer of know-how without disrupting
the project. Understanding and quantifying
the impacts of involving less-experienced
programmers from the client organization
proved most valuable to the management
team, and the project was completed
successfully and on schedule.

Assessing the Impacts of Client Changes

If the client were to ask for scope changes,
what would be the full impacts on the
project outcome, and why? How could the
contractor explain to the client the full
extent of these impacts? Both numerical
estimates and a clear explanation were
important. SD modeling could help answer
both of these questions.

©1999 Cutter Information Corp.

The problem with scope changes halfway
through development is not so much the
direct impacts but the knock-on effects.
Because these are indirect, they are more
difficult to identify and estimate. Another
problem is that scope changes rarely consist
of a single, uncontrolled event caused by
the client — although the contractor often
assumes so. Instead, they result from an
ongoing relationship between the client and
the contractor.

One of the techniques used in SD modeling
is the development of causal maps, also
called influence diagrams. These diagrams
identify all the relevant factors involved in a
certain dynamic phenomenon and link
them through cause-and-effect relation-
ships. These links generate closed feedback
loops, which in the end are responsible for
the dynamic phenomenon.

Let us consider the example of client
changes. First the client requests changes,
then the contractor perceives that extra time
will be required. Rarely does the client
agree to the full amount of extra time really
needed. The client’s perspective is that,
while some extra time may be acceptable, it
is the contractor’s obligation to cope with

» Work Rate
Productivity L@
0)/0
Percelved
Schedule
Schedule/5|ippage

Pressure

Extra Time

the problem. The contractor will simply
have to handle the remaining schedule
pressure by increasing staff productivity and
the overall project work rate (e.g., requiring
overtime, doing less QA).

This view of the problem is described in the
causal map shown in Figure 1. Two loops
can be identified in the cause-and-effect
chains: the first loop, L1, shows how part of
the schedule slippage is handled by negoti-
ating a schedule extension with the client;
the second loop, L2, shows how the
remaining slippage is handled through pres-
sures to increase productivity. The individual
relationships in the influence diagram can
be positive, meaning that the factors change
in the same direction (e.g., the higher the
productivity, the higher the work rate), or
they can be negative, meaning that the
factors change in the opposite direction
(e.g., the higher the work rate, the lower the
perceived schedule slippage). The negative
relationships are identified here with an “O”
(meaning “opposite”). All the other relation-
ships are positive. Feedback loops with an
odd number of “Os” are called negative, or
balancing, loops (here identified with a
“B-”). This is because they generally show a
phenomenon where a problem generates

Planned Schedule
«.

L1:B-
Schedule
Adjustment

Negotiated /
Sé‘ edule
Adj

ustment

Perceived Needed
Due to Scope Changes

Scope Changes
Accepted by
the Contractor

¥~ Client Request for

Scope Changes

Figure 1: An SD causal map representing an incomplete view of the impacts of scope changes

Get the Cutter Edge free: www.cutter.com/itgroup/

Vol. 12, No. 3

CUTTER

March 1999

JOURNAL

51

CUTTER

52

JOURNAL

March 1999

/y Work Rate

0

Planned Schedule

0
L1:B

by 5
Perceived
Schedu\e Schedule
Schedule / Slippage Adj<ustment

/ﬂ Pressure

Side effects: L3R+ >
HDefect generation
WQA effectiveness S~

W\Work out of sequence
WStaff fatigue
WTrust in stability of requirements <
Contractor's

Pressure to

Accept Changes

L4:R+)

Perceived Needed
Due to Scope Changes

Negotiated
Schedule

Adjustment \
4

Extra Time Client
Willingness to
5:R+ Accept Scope
Changes

N Y,

Scope Changes
Accepted by

~¥ the Contractor \ Client Requestfor
_/ Scope Changes

Figure 2: A complete view of the full impacts of client scope changes

actions that, over time, will attenuate that
problem. The other loops are called posi-
tive, or reinforcing, loops (here identified
with a “R+7”), because they show dynamic
events that reinforce themselves over time
— like vicious circles.

The influence diagram in Figure 1 describes
two true effects — neither the client nor the
contractor can reject them. However, any
contractor will know that this is an opti-
mistic and incomplete view: scope changes
are not just about extending the schedule a
little bit and working faster. There are other
serious effects:

B Scope changes typically require
work to be done out of sequence,
decreasing QA effectiveness and
increasing defect generation. Later,
rework will emerge and will cause
delays. Generally, the client does not
accept these delays, and if more
time is to be negotiated, the
contractor is now under pressure to
accept further scope changes.

Vol. 12, No. 3

B As the client concedes schedule
extensions to accommodate current
scope changes, the more the client
feels the right to ask for further
changes in the future.

These effects were added to the causal
map, as shown in Figure 2. Three more
cause-and-effect loops can be identified. L3
shows that if the negotiated schedule exten-
sion is not long enough, excessive schedule
pressure will cause negative side effects,
which in the long run will delay the project
even more. L4 shows that scope changes
themselves may cause technical difficulties
and adverse side effects, which will lead to
delays. In order to get the extra time needed
from the client, the contractor is now under
pressure to accept further scope changes. L5
shows that as the client concedes schedule
extensions, the more the client is likely to
ask for further scope changes in the future.

All these loops are positive, or reinforcing,
showing how problems can easily snowball

©1999 Cutter Information Corp.

throughout the project life cycle, eventually
aggravating one another. Each loop in the
diagram can be seen as a “force” pushing
the project outcome toward a certain direc-
tion. The final outcome will be the result of
these combined forces. This is certainly a
more complete and realistic view of the full
impact of scope changes. The client will
certainly agree that there are side effects, as
shown in loops L3 and L4. The client has
probably experienced situations where an
aggressive posture toward the contractor
has led to more and more scope changes,
with the final outcome being serious over-
runs of schedule and cost. A caual map like
this, agreed to by both parties, enhances
communication and is an excellent means
for negotiating scope changes.

Both parties are aware that if the right
balance between a schedule extension and
schedule pressure is not achieved, prob-
lems may escalate. The question now is,
what is the right balance? In order to
answer this question, one needs to move
onto a quantitative analysis. In SD modeling,
causal maps can be translated into simula-
tion models that capture and quantify all the
individual cause-and-effect relationships in
great detail, through the use of equations.
The model allows the user to test several
scenarios until the desired outcome is
achieved and the best solution is identified.

[will now present an example of this type of
quantitative analysis using the SD model
from our case-study project. The model is
used to analyze the impacts of introducing
scope changes during the later stages of the
design phase of a certain system component.

In this case, the team knew that the
requested changes could be accommodated
with little or no schedule adjustment.
However, while the cost impacts might be
minor, what would be the impacts on the
quality of the designs? A high number of unde-

Get the Cutter Edge free: www.cutter.com/itgroup/

tected design defects could escape to the
coding phase, and the problems in integration
could then be disastrous. The question was,
how much more schedule should be given
to the design phase in order to accommodate
the requested scope changes without
damaging the quality of the designs too much?

In our example, a total of 30% of the initial
requirements were to be changed, and the
client started requesting these changes
about 75% of the way into the design phase.
Various policies for schedule adjustment
were tested in the SD model. The results are
shown in Figure 3, which presents the time-
cost-quality impacts of different schedule
adjustment policies. Each point on the x-
axis shows a different policy:

B A 100% policy means that if 30% of
scope changes are requested, then
the schedule will also be extended
by 30% (i.e., 100% of 30%) of the
initial planned duration.

B A 50% policy means that the
schedule will be extended by 15%
(i.e., 50% of 30%).

B A 0% policy means that the schedule
will be kept as originally planned.

The y-axis shows the percentage variations
in cost, schedule, and defects escaped (i.e.,
quality of the designs) against the scenario
where no scope changes were requested
(called the “base case”). Each point in the
graph refers to an experimental run in the
model where the respective scheduling
policy was tested. The results show that
keeping the original schedule eventually
leads to schedule and cost overruns of 18%,
but at the expense of a very low design
quality: about 75% more design defects
escape to coding. Beyond a 20% schedule
adjustment policy, considerable gains in
quality start being achieved at some
expense of cost and schedule. Beyond a
60% policy, the marginal gains in quality

Vol. 12, No. 3

CUTTER

March 1999

JOURNAL

53

CUTTER

54

JOURNAL

March 1999

Deviation

from base

case
100%

80%

60% .\.\

40% \-\

20%

T

————

0%]

0% 20% 40%

60% 80% 100%

Adjustment Fraction

—p— Schedule

Cost —— Defects Escaped

Figure 3: Impacts of different schedule adjustment policies

become minor and might not outweigh the
increasing schedule and cost overruns.
Therefore, this analysis suggests that the
schedule should be extended by 18% (i.e.,
60% of 30%) of the original duration. Figure
4 shows some characteristics of the
dynamic behavior of the design phase for
the two experiments of: (1) no schedule
adjustment, and (2) a 60% schedule adjust-
ment policy (see Figures 3 and 4).

With this quantitative analysis, both
contractor and client know that a schedule
adjustment less than 6% (i.e., 20% of 30%)
will cause an unacceptable low quality of
the designs. The contractor knows that
asking the client for more than an 18%
schedule extension is not worth it and is
only likely to encourage further requests for
changes. Both parties also know that, even
with the best solution (i.e., a 60% policy),
the design phase will inevitably cost more
and last longer (about 20%), while the
number of defects escaping to coding is
likely to increase 38%. A more detailed
description of these results and how the SD
project model was developed and validated
can be found in [7].

Vol. 12, No. 3

The value of an SD analysis like this is two-
fold: (1) it provides numerical estimates,
which are useful in assessing the impacts
and developing mitigating actions, and (2)
since both parties are involved in devel-
oping the causal map and both provide
input to quantify the simulation model, they
both have a sense of ownership of the results.
This creates commitment and helps in
reaching consensus. As a business modeling
technique, system dynamics used in this way
can play the important role of enhancing
communication and negotiation between
parties that may have different objectives
and possibly different managerial and even
national cultural backgrounds. What could
be a fierce dispute for concessions may
become a joint modeling effort aimed at
finding the best solution for the project.

HOW CAN WE USE SD MODELING IN
GLOBAL SOFTWARE PROJECTS?

Global software projects include multina-
tional parties. Effective communication and
negotiation among these parties is critical to
success. Yet the potential barriers are
numerous, and difficulties will always
emerge. The key is not to hope to prevent
all these difficulties but to handle them

©1999 Cutter Information Corp.

1: Actual Schedule 2: Estimated Cost 3: Designs Completed

4: Cum Changes 5:Errors to rework

120.00

1

20 500.00
3t 6000.00
4:
5:

500.00

60.00
250.00

I e e
25000

G wn

0.00
0.00

GEwn o

0.00

0.00

1: Actual 2: Estimated
Schedule Cost

3: Designs
Completed

60.00 90.00 120.00

4: Cum 5:Errors to
Changes rework

120.00

500.00
6000.00

G W —

500.00

60.00
250.00

CEwn

25000 |

0.00
0.00

GEwn o

0.00 e)

300000 — 2

000 pmmmgmest T T -~

Figure 4:

effectively when they arise. This can only be
achieved by bringing the views of the
different parties together and finding solu-
tions on this basis, while making everyone
understand why — a good solution without
support from all parties is doomed to failure.
Everyone’s point of view must be consid-
ered, and it has to be everyone’s solution
for the benefit of the project.

In this article, I have argued that business
modeling can play an important role in facil-
itating effective communication and negoti-
ation among the parties in a global software
project. The various ways in which different
people understand a problem can be repre-
sented as a common view, and solutions
can be identified more effectively. But how
should an organization involved in a global
software project approach the use of SD
modeling in this way?

Get the Cutter Edge free: www.cutter.com/itgroup/

60. 50 90. BO 120.00

Tim,

Dynamic behavior of the design phase produced by the model

Well, first there is some basic learning
required about the methodology. Like any
modeling technique, SD has its own tech-
nical side, but this does not put it out of
reach. The development of causal maps or
influence diagrams will require some famil-
iarization with the feedback perspective of
the world. Fortunately, most of us under-
stand the term “vicious circle” (positive/
reinforcing feedback) and know how a ther-
mostat controls the temperature of a room
(negative/balancing feedback). Causal maps
are the qualitative side of SD. Problems can
be diagnosed and solutions identified at this
level. Using the causal map technique is a
good first step. The quantification of the
causal maps into simulation models requires
the use of specialized software packages
(e.g., iThink/Stella, Powersim, Vensim).
Quantification also requires more technical

Vol. 12, No. 3

CUTTER

March 1999

JOURNAL

55

CUTTER

JOURNAL

Alexandre Rodrigues is a lecturer
at the University of Minho, where
he also works as a consultant
specializing in the use of system
dynamics modeling in software
development and project manage-
ment issues. Mr. Rodrigues has
previously worked as a software
analyst and pursued the NATO
Ph.D. program at the University of
Strathclyde, UK. His research
focused on the application of
systemn dynamics to software
project management, and he has
published various articles on this
topic. Mr. Rodrigues later worked
as a consultant at the Pugh-
Roberts Associates practice of PA
Consulting Group, where he also
applied part of his research to the
development of software products.
He received a licentiate degree in
systems and computing engi-
neering from the University of
Minho, Portugal.

Mr. Rodrigues can be reached at
the Department of Information
Systems, The School of
Engineering, University of Minho,
4800 Guimaraes, Portugal. Tel.:
+351 53 510 149; Fax: +351 53 510
250; E-mail: Alex.Rodrigues@
dsi.uminho.pt; Web site:
wwuw.dsi.uminho.pt/~alex/

56 March 1999

knowledge and some level of familiarity
with the principles of simulation. However,
the software packages available are user
friendly, and the modeling language is
presented in a visual fashion, making it
easier for the beginner. A good practical
introduction to SD modeling can be found in
[2] and also in [5].

Secondly, it is important to decide who will
build the model and what is the develop-
ment method to be followed. My advice is
that the individuals in charge of this work
should belong to the software process
improvement group, which usually is also in
charge of metrics. Given the nature of this
group, it will be easier for these individuals
to grow and maintain the required technical
knowledge. Furthermore, an SD project
model requires metrics for calibration and is
also an excellent tool for assessing the
impacts of software process improvement
initiatives. Regarding the model develop-
ment method, there is, unfortunately, no
formal method available yet that ensures
the development of the right project model.
For the inexperienced modeler, the develop-
ment, calibration, and validation of the
model will require some expert guidance.

Finally, an organization will achieve higher
returns from its first effort by using the model
in various projects. In order to reuse a model,
my two main pieces of advice are: (1)
develop and maintain a database of metrics
as the model is used and calibrated to past
projects, and (2) build the model as an
assembly of generic substructures and main-
tain these in a database. Different projects
will require models with different architec-
tural structures. It will be easier and quicker
to develop new models by reusing and
assembling these generic substructures —
you can call this the “modeling version” of
the OO/component development approach
to software development. A final piece of
advice: start simple; get used to causal

Vol. 12, No. 3

maps first, and then try to derive simple
models from them. Just these small steps
are likely provide you with valuable insights
about your software project. Move onto
more complex models after you get comfort-
able with the methodology. And remember:
the model is there to help you take deci-
sions and not to take the decisions for you.

REFERENCES

1. Association for Project Management. “IT
Project Failure.” Project, Vol. 11, No. 6
(November 1998), pp. 5.

2. Coyle, R.G. System Dynarmics Modeling: A
Practical Approach. Chapman & Hall, 1996.

3. Forrester, J. Industrial Dynamics. MIT
Press, 1961.

4. Marcos, A. “Modelling Cooperative
Multimedia Support for Software
Development and Stand-alone
Environments” (Ph.D. diss., University of
Darmstadt, Germany, 1998).

5. Richardson, G.P, and A.L. Pugh.
Introduction to System Dynamics Modeling
with Dynamo. MIT Press, 1981.

6. Rodrigues, A.G., and J.A. Bowers. “The
Role of System Dynamics in Project
Management.” International Journal of
Project Management, Vol. 14, No. 4 (August
1996), pp. 213-220.

7. Rodrigues, A.G., and T. Williams. “System
Dynamics in Project Management: Assessing
the Impacts of Client Behaviour on Project
Performance.” Journal of the Operational
Research Society, Vol. 49, No. 1 (January
1998), pp. 2-15.

8. Schneider, A. “Project Management in
International Teams: Instruments for
Improving Cooperation.” International
Journal of Project Management, Vol. 13, No.
4 (August 1995), pp. 247-251.

©1999 Cutter Information Corp.

